CHAPTER

BASIC PROPERTIES OF NUMBERS

The title of this chapter expresses in a few words the mathematical knowledge
required to read this book. In fact, this short chapter is simply an explanation
of what is meant by the “hasic properties of numbers,” all of which—addition
and multiplication, subtraction and division, solutions of equations and
inequalities, factoring and other algebraic manipulations—are already
familiar 1o us. Nevertheless, this chapter is not a review. Despite the familiarity
of the subject, the survey we are about to undertake will probably seem quite
novel; it does not aim to present an extended review of old material, but to
condense this knowledge into a few simple and obvious properties of numbers.
Some may even seem too obvious to mention, but a surprising number of
diverse and important facts turn out to be consequences of the ones we shall
emphasize.

Of the tweive properties which we shall study in this chapter, the first nine
are concerned with the fundamental operations of addition and multiplica-
tion. For the moment we consider only addition: this operation is performed
on a pair of numbers—the sum a + 4 exists for any two given numbers a and b
(which may possibly be the same number, of course). It might seem reason-
able to regard addition as an operation which can be performed on several
numbers at once, and consider the sum a1+ * - +ay of n numbers
ai, . . . , 4y as a basic concept. It is more convenient, however, to consider
addition of pairs of numbers only, and to define other sums in terms of sums
of this type. For the sum of three numbers q, 4, and ¢, this may be done in two-
different ways. One can first add 4 and ¢, obtaining b + ¢, and then add a to
this number, obtaining a + (b + ¢); or one can first add a and b, and then
add the sum @ + b to ¢, obtaining (¢ + &) <+ ¢. Of course, the two compound
sums obtained are equal, and this fact is the very first property we shall list:

(P1) If q, b, and ¢ are any numbers, then
a+ b+c)=(a+0b) +e

The statement of this property clearly renders a separate concept of the sum
of three numbers superfluous; we simply agree that a + b + ¢ denotes the
number a + (b + ¢) = (a + b) + ¢. Addition of four numbers requires
similar, though slightly more involved, considerations. The symbol a + b+
¢ + d is defined to mean
(1) (la+06) +0) +4
or (2) (a+ (b+0¢) +4d,
or 3) a+ (b+¢) +4d),
or (4) a-+ (b+ (c+a)),
or (5) (a4 b)+ (c+d).
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This definition is unambiguous since these numbers are all equal. Fortunately,
this fact need not be listed separately, since it follows from the property P1
already listed. For example, we know from P1 that

@+d)+c=a+ (b+0),

and it follows immediately that (1) and (2) are equal. The equality of (2) and
(3) is a direct consequence of P1, although this may not be apparent at first
sight (one must let 4 + ¢ play the role of 4 in P1, and 4 the role of ¢). The
equalities (3) = (4) = (5) are also simple to prove.

It is probably obvious that an appeal to P1 will also suffice to prove the
equality of the 14 possible ways of summing five numbers, but it may not be so
clear how we can reasonably arrange a proof that this is so without actually
listing these 14 sums. Such a procedure is feasible, but would soon cease to be
if we considered collections of six, seven, or more numbers; it would be totally
inadequate to prove the equality of all possible sums of an arbitrary finite
collection of numbers ai, . . . , a,. This fact may be taken for granted, but
for those who would like to worry about the proof (and it is worth worrying
about once) a reasonable approach is outlined in Problem 23. Henceforth, we
shall usually make a tacit appeal to the results of this problem and write sums
ai+ + + - + a, with a blithe disregard for the arrangement of parentheses.

The number 0 has one property so important that we list it next:

(P2) If a is any number, then
a+0=04+a=a
An important role is also played by 0 in the third property of our list:
(P3) For every.number a, there is a number —a such that
a+ (—a) = (—a) +a=0.

Property P2 ought to represent a distinguishing characteristic of the number
0, and it is comforting to note that we are already in a position to prove
this. Indeed, if a number x satisfies

atx=a

for any one number g, then ¥ = 0 (and consequently this equation also holds
for all numbers a). The proof of this assertion involves nothing more than
subtracting a from both sides of the equation, in other words, adding —a to
both sides; as the following detailed proof shows, all three properties P1-P3
must be used to justify this operation.

It a+x=a
then (—a)+ (@+x) = (—a)+a=0;
hence ((—a) +a) + x = 0;

hence 0+ x=0;
hence x = 0.
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As we have just hinted, it is convenient to regard subtraction as an operation
derived from addition: we consider a — & to be an abbreviation for a + (—5).
It is then possible to find the solution of certain simple equations by a series
of steps (each justified by P1, P2, or P3) similar to the ones just presented for
the equation ¢ 4+ x = a. For example:

If x+3=05,
then (x+3)+ (=3) =5+ (—3);
hence x+ 3+ (=3))=5—3=2:
hence x+0=2
hence x = 2.

Naturally, such elaborate solutions are of interest only until you become con-
vinced that they can always be supplied. In practice, it is usually just a waste
of time to solve an equation by indicating so explicitly the reliance on proper-
ties P1, P2, and P3 (or any of the further properties we shall list).

Only one other property of addition remains to be listed. When considering
the sums of three numbers a, 6, and ¢, only two sums were mentioned: (a + b)
4+ ¢ and a 4+ (b + ¢). Actually, several other arrangements are obtained if
the order of a, b, and ¢ is changed. That these sums are all equal depends on

(P4) If a and b are any numbers, then
at+b=0b+a

The statement of P4 is meant to emphasize that although the operation of
addition of pairs of numbers might conceivably depend on the order of the
two numbers, in fact it does not. It is helpful to remember that not all opera-
tions are so well behaved. For example, subtraction does not have this prop-
erty: usually a — b b — a. In passing we might ask just when @ — b does
equal b — ¢, and it is amusing to discover how powerless we are if we rely
only on properties P1-P4 to justify our manipulations. Algebra of the most
elementary variety shows thata — b = & — a only when a = 4. Nevertheless,
it is impossible to derive this fact from properties P1-P4; it is instructive to
examine the elementary algebra carefully and determine which step(s)
cannot be justified by P1-P4. We will indeed be able to justify all steps in
detail when a few more properties are listed. Oddly enough, however, the
crucial property involves multiplication.

The basic properties of multiplication are fortunately so similar to those for
addition that little comment will be needed; both the meaning and the conse-
quences should be clear. (As in elementary algebra, the product of 2 and &
will be denoted by a * 4, or simply ab.)

(P5) Ifa, b, and ¢ are any numbers, then
a*(b-¢c)="(a"b) c.
(P6) If g is any number, then

a'l=1'a=a.
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Moreover, 1 #= 0.

(The assertion that 1 # 0 may seem a strange fact to list, but we have to
list it, because there is no way it could possibly be proved on the basis of
the other properties listed—these properties would all hold if there were
only one number, namely, 0.)

(P7) For every number a # 0, there is a number ¢! such that
aral=a

(P8) If z and b are any numbers, then
a*b=1"b"a

One detail which deserves emphasis is the appearance of the condition
a # 0 in P7. This condition is quite necessary; since 0 - & = 0 for all numbers
b, there is no number 07! satisfying 0 + 07! = 1. This restriction has an impor-
tant consequence for division. Just as subtraction was defined in terms of
addition, so division is defined in terms of multiplication: the symbol a/b
means a - b~ Since 07! is meaningless, a/0 is also meaningless—division by 0
is always undefined.

Property P7 has two important consequences. If a* b = a - ¢, it does not
necessarily follow that b = ¢; for if @ = 0, then both ¢ b and @ - ¢ are 0, no
matter what b and ¢ are. However, if a # 0, then & = ¢; this can be deduced
from P7 as follows:

If a*b =a*canda # 0,
then e 1-{(a"b) =a 1 (a-c);
hence (a7 '+ a) b= (a"'"a) ¢
hence 1-b=1"-¢

hence b = c.

It is also a consequence of P7 that if a - & = 0, then either « = 0 or b = 0.
In fact,
if a*b=0anda =0,
then a7 1-(a‘b) = 0;
hence (a™':a) b = 0;
hence 16 ;
hence

It
=

>

0.

(It may happen that @ = 0 and # = 0 are both true; this possibility is not
excluded when we say “either ¢ = 0 or 4 = 0”; in mathematics “or” is
always used in the sense of ““one or the other, or both.”)

This latter consequence of P7 is constantly used in the solution of equations.
Suppose, for example, that a number x is known to satisfy

x — 1)(x—2) =0.

Ther it follows that either x — 1 = 0 or x <~ 2 = 0; hence x = 1 or x = 2.
On the basis of the eight properties listed so far it is still possible to prove

o~
il
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very little. Listing the next property, which combines the operations of addi-
tion and multiplication, will alter this situation drastically.

(P9) If a, b, and ¢ are any numbers, then
a {(b+c¢c)=a"b+ac
(Notice that the equation (b +¢) *a = b a + ¢ ais also true, by P8.)

As an example of the usefuiness of P9 we will now determine just whena — b

=b—a:
If a—b=0b—a,
then @a—b8)+b=0B—a)+b=0>b+(b—a);
hence a=b+b—a;
hence at+a=0b+b—a)+a=b+5b
Consequently - (1 4+ 1) =6-(1+1),
and therefore a = b.

A second use of P9 is the justification of the assertion ¢ - 0 = 0 which we have
already made, and even used in a proof on page 6 (can you find where?).
This fact was not listed as one of the basic properties, even though no proof
was offered when it was first mentioned. With P1-P8 alone a proof was not
possible, since the number 0 appears only in P2 and P3, which concern addi-
tion, while the assertion in question involves multiplication. With P9 the
proof is simple, though perhaps not obvious: We have

a-04+a0=a"(0+0)
=gq-0;

as we have already noted, this immediately implies (by adding (a - 0) to
both sides) that ¢ * 0 = 0.

A series of further consequences of P9 may help explain the somewhat
mysterious rule that the product of two negative numbers is positive. To begin
with, we will establish the more easily acceptable assertion that (—a) b=
—(a - b). To prove this, note that

(—a) b+a-b=[(—a)+adl"b
=06
= 0.
It follows immediately (by adding —(a - 4) to both sides) that (—a) b=
—(a * b). Now note that
(—a)  (=h) + [—(a"b)] = (=a) - (=b) + (=a) b
= (—a) " [(=b) + 8]
=(—a)* 0
= 0.
Consequently, adding (a - b) to both sides, we obtain
(—a) - (—b) =a-"b.
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The fact that the product of two negative numbers is positive is thus a conse-
quence of P1-P9. In other words, if we want P71 to P9 to be true, the rule for the
product of two negative numbers is forced upon us.

The various consequences of P9 examined so far, although interesting and
important, do not really indicate the significance of P9; after all we could have
listed each of these properties separately. Actually, P9 is the justification for
almost all algebraic manipulations. For example, although we have shown
how to solve the equation

x—1x—2)=0,

we can hardly expect to be presented with an equation in this form. We are
more likely to be confronted with the equation

x—3x4+2=0.

The “factorization” x* —3x +2 = (x — 1)(x — 2) is really a triple use
of P9:
=D x=2)=x"(x—=2)+(=1)(x —2)
=z x4x (=2 + (=1) 5+ (—1) - (—2)
=2+ x[(=2) + (-] + 2 '
=x?—3x + 2.

A final illustration of the importance of P9 is the fact that this property is
actually used every time one multiplies arabic numerals. For example, the

calculation
13

X24
52
26

312

Is a concise arrangement for the following equations:

13-24 =13-(2-10 4+ 4)
=13-2-104+ 13-4
= 2610 4 52.

(Note that moving 26 to the left in the above calculation is the same as writing
26 - 10.) The multiplication 13 + 4 = 52 uses P9 also:

13:4=(1-10+3)-4
1:10-4+3-4
4-10 + 12
4-104+1-10 42
(4+1)-10+2
5-10 + 2

52,

I

It
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The properties P1-P9 have descriptive names which are not essential to

remember,

but which are often convenient for reference. We will take this

opportunity to list properties P1-P9 together and indicate the names by
which they are commonly designated.

(P1)
(P2)

(P3)
(P4)
(P5)
(P6)
P7)

(P8)

(P9)

(Associative law for addition) a+ (b +¢) = (a + b) + ¢
(Existence of an additive a+0=0+a=a
identity)

(Existence of additive inverses) a + (—a) = (—a) +a = 0.
(Commutative law for addition) a + 6 =6 + a.

(Associative law for multiplica- a- (b-¢) = (a*b) " c.

tion)

(Existence of a multiplicative ~a*1=1-a=14a; 1#0.
identity)

(Existence of multiplicative a~at=a'a=1,fora0.
inverses)

(Commutative law for multi- a*b="0b"a

plication)

(Distributive law) (b4+c)=a"b+ta-c

IN)

The three basic properties of numbers which remain to be listed are con-
cerned with inequalities. Although inequalities occur rarely in elementary
mathematics, they play a prominent role in calculus. The two notions of
inequality, ¢ < b (aislessthanb)anda > b (ais greater than b), are intimately
related: ¢ < b means the same as 4 > a (thus 1 < 3 and 3 > 1 are merely two
ways of writing the same assertion). The numbers « satisfying a > 0 are
called positive, while those numbers a satisfying a < 0 are called negative.
While positivity can thus be defined in terms of <, it is possible to reverse
the procedure: ¢ < b can be defined to mean that 6 — a is positive. In fact,
it is convenient to consider the collection of all positive numbers, denoted by
P, as the basic concept, and state all properties in terms of P:

(P10)

(P11)
(P12)

(Trichotomy law) For every number a, one and only one of the
following holds:

(i) a=0,
(ii) a is in the collection P,
(iii) —a is in the collection P.

(Closure under addition) If a and b are in P, then a + 6 is in P.

(Closure under multiplication) If ¢ and 6 are in P, then a - b is
in P.
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These three properties should be complemented with the following defini-
tions:
a>b if a—bisin P,
a<b if b>a
a>b if a>bora=b;
a<b if a<bora=5hb*

Note, in particular, that ¢ > 0 if and only if 2 is in P.

All the familiar facts about inequalities, however elementary they may
seem, are consequences of P10-P12. For example, if « and 4 are any two
numbers, then precisely one of the following holds:

(i) a—b=0,
(ii) @ — b is in the collection P,
(ili) —(a — b) = b — a is in the collection P.

Using the definitions just made, it follows. that precisely one of the following
holds:

(i) a=6,

(ii) a> b,

(i) & > a.

A slightly more interesting fact results from the following manipulations.

Ifa < b, s0 that b — ais in P, then surely (b + ¢) — (@ + ¢) is in P; thus, if
a < b, thena + ¢ < b + ¢. Similarly, suppose a < b and 6 < ¢. Then

b—aisin P,
and ¢ ~— bisin P,
so ¢—a= =8+ (b —a)isinP.

This shows that if a < 4 and 4 < ¢, then a < ¢. (The two inequalities a < b
and b < ¢ are usually written in the abbreviated form a < & < ¢, which has
the third inequality a < ¢ almost built in.)

The following assertion is somewhat less obvious: If ¢ < 0 and 4 < 9, then
ab > 0. The only difficulty presented by the proof is the unraveling of defini-
tions. The symbol a < 0 means, by definition, 0 > a, which means 0 — a =
—a is in P. Similarly —# is in P, and consequently, by P12, (—a)(—5) = ab
is in P. Thus ab > 0.

The fact that @b > 0 if @ > 0, 4 > 0 and also if 2 < 0, 4 < 0 has one
special consequence: a® > 0 if @ 0. Thus squares of nonze:.. numbers are

* There is one slightly perplexing feature of the symbols > and <. The statements

1+1<53
14+1<2

are both true, even though we know that < could be replaced by < in the first, and by =
in the second. This sort of thing is bound to occur when < is used with specific numbers; the
usefulness of the symbol is revealed by a statement like Theorem 1—here equality holds for
some values of a and b, while inequality holds for other values.
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always positive, and in particular we have proved a result which might have
seemed sufficiently elementary to be included in our list of properties: 1 > 0
(since 1 = 12).

The fact that —a > 0 if ¢ < 0 is the basis of a concept which will play an
extremely important role in' this book. For any number a, we define the
absolute value |a| of a as follows:

la] = { a, a=>0

a = —a, a<0.
Note that la| is always positive, except when ¢ = 0. For example, we have
=3 =3, 7] =7, | +V2-V3 =1 +V2=V3 and 1 + V2~
V10| = V10— V2 — 1. 1In general, the most straightforward approach to
any problem involving absolute values requires treating several cases sepa-
rately, since absolute values are defined by cases to begin with. This approach
may be used to prove the following very important fact about absolute values.

For all numbers ¢ and b, we have

la + &} < la| + |21
We will consider 4 cases:

(1) a=20, 620

(2) a20, 5Z0;

(3) a<0, b>0;

(4) a<0, b<0.

In case (1) we also have a + & > 0, and the theorem is obvious; in fact,
la+ bl =a+0b=la + 5

so that in this case equality holds.
In case (4) we have a + b < 0, and again equality holds:

la+ 8 = —(a+b) =—a+ (=b) =ld + 5]
In case (2), when a > 0 and & < J, we must prove that
la+ b <a—b

This case may therefore be divided into two subcases. Ifa+ 6> 90, then we

must prove that
a+b<a-—b,
ie., b < —b,

which is certainly true since 6 is negative and —& is positive. On the other
hand, if 2 + b < 0, we must prove that
—a—b6<a—b,
ie., —a<a,

which is certainly true since a is positive and —a is negative.
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Finally, note that case (3) may be disposed of with no additional work, by
applying case (2) with 4 and & interchanged. |

Although this method of treating absolute values (separate consideration
of various cases) is sometimes the only approach available, there are often
simpler methods which may be used. In fact, it is possible to give a much
shorter proof of Theorem 1; this proof is motivated by the observation that

la] = Ve,

(Here, and throughout the book, V% denotes the positive square root of x; this
symbol is defined only when x > 0.) We may now observe that

(la + 8))2 = (a + b)? = a® + 2ab + b2
a® + 2|a| - |8] + 2
la|* + 2la] - [6] 4 [6]?
= (lal + [6)*

From this we can conclude that |a + 4| < |a| 4 |b] because x? < y? implies
x <y, provided that x and y are both non-negative; a proof of this fact is left
to the reader (Problem 5).

One final observation may be made about the theerem we have just
proved: a close examination of either proof offered shows that

la + 8] = la| + [8]

if 2 and 4 have the same sign (i.e., are both positive or both negative), or if
one of the two is 0, while

A

la + 8] < la] + |b]

if a and b are of opposite signs.

We will conclude this chapter with a subtle point, neglected until now,
whose inclusion is required in a conscientious survey of the properties of
numbers. After stating property P9, we proved that a — b = 5 — a implies
a = b. The proof began by establishing that

a*(1+4+1)=56-(1+41),

from which we concluded that = 4. This result is obtained from the equation
a*(1+1) =46 -(14+1) by dividing both sides by 1 + 1. Division by 0
should be avoided scrupulously, and it must therefore be admitted that the
validity of the argument depends on knowing that 1 + 1 = 0. Problem 24
is designed to convince you that this fact cannot possibly be proved from
properties P1-P9 alone! Once P10, P11, and P12 are available, however, the
proof is very simple: We have already seen that 1 > 0; it followsthat1 + 1 >
0, and in particular 1 4+ 1 = 0.

This last demonstration has perhaps only strengthened your feeling that it
is absurd to bother proving such obvious facts, but an honest assessment of our
present situation will help justify serious consideration of such details. In
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this chapter we have assumed that numbers are familiar objects, and that
P1-P12 are merely explicit statements of obvious, well-known properties of
numbers. It would be difficult, however, to justify this assumption. Although
one learns how to “work with” numbers in school, just what numbers are,
remains rather vague. A great deal of this book is devoted to elucidating the
concept of numbers, and by the end of the book we will have become quite
well acquainted with them. But it will be necessary to work with numbers
throughout the book. It is therefore reasonable to admit frankly that we do
not yet thoroughly understand numbers; we may still say that, in whatever
way numbers are finally defined, they should certainly have properties
P1-P12.

Most of this chapter has been an attempt to present convincing evidence
that P1-P12 are indeed basic properties which we should assume in order to
deduce other familiar properties of numbers. Some of the problems (which
indicate the derivation of other facts about numbers from P1-P12) are offered
as further evidence. It is still a crucial question whether P1-P12 actually
account for all properties of numbers. As a matter of fact, we shall soon see
that they do 7ot In the next chapter the deficiencies of properties P1-P12 will
become quite clear, but the proper means for correcting these deficiencies is
not so easily discovered. The. crucial additional basic property of numbers
which we are seeking is profound and subtle, quite unlike P1-P12. The dis-
covery of this crucial property will require all the work of Part II of this book.
In the remainder of Part I we will begin to see why some additional property
is required; in order to investigate this we will have to consider a little more
carefully what we mean by “numbers.”

PROBLEMS
1. Prove the following:

(i) If ax = a for some number a # 0, then x = 1.

(i) «*—y* = (x = y)(x + ).

(iii) If x> = % thenx = yorx = —y.

(iv) x* —y* = (x — ) («* + 2y + 7).

V) 2" —y"=(x—NET+ Yy + - - -+ xy"7 4y,

(vi) ¥+ 33 = (x + y)(x2 — xy + »?). (There is a particularly easy
way to do this, using (iv), and it will show you how to find a fac-
torization for x® 4 y™ whenever 7 is odd.)

2. What is wrong with the following “proof”’? Let x = y. Then

xt = xy,

X —yt=xy — %
x4+ =) =y(x —y),
x+y =y,
2y =3,
2=1.
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3.

4.

Prove the following:

()

(ii)

(iii)

(iv)

(v)

(vi)

e
b

=% it b, c = 0.
be

¢ __ad+be
d bd

»if b, d 7 0.

(ab)™t = @~ %Y, if a, b 5 0. (To do this you must remember the
defining property of (ab)™%.)

ot
b
a

b

=it b d 0.
4 b

d
£ =% b ¢, d = 0.
d be

If b, d # 0, then% = gif and only if ad = bc. Also determine when

>

it

Q| >

Find all numbers x for which

()
(i)
(iii)
(iv)
v)
(vi)

(vit)

(viii)

(ix)
(x)
(xi)

(xii)

(xiii)

(xiv)

4 — x <3~ 2x.

5 —x*< 8.

5 —xr< =2

(x — 1)(x — 3) > 0. (When is a product of two numbers posi-
tive?)

x2—=2x+2>0.

24 x+1>2

xt — x + 10 > 16.

x24+x+1>0.

(x —m)(x + 5 — 3) > 0.
(x — V2)(x = V2) > 0.
2% < 8.

x + 3% < 4.

1

1 —x

1
-+ > 0.
X

x—1_
>
x4+ 1

Prove the following:

@
(ii)

Ifa <bandc < d,thena+¢ < b +d.
If a < b, then —b < —a.
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(iii) Ifea <bandc¢>d, thena —¢c <b —d.

(iv) Ifa < b and ¢ > 0, then ac < be.

(v) Ifa <bandc <0, then ac > be.

(vi)y Ifa>1,thena?> a

(vii) If0 < a < 1, then a® < a.

(viii) If 0 € a < band 0 < ¢ < d, then ac < bd.

(ix) If0 < a < b, then a? < b2 (Use (viii).)

(x) Ifa, b > 0anda? < 4% thena < b. (Use (ix), backwards.)

Prove that if 0 < a < b, then

— b
a<\/(1b<(’l‘—;—<b.

Notice that the inequality Vab < (a ++ b)/2 holds for a, b > 0, without

the additional assumption a < &. A generalization of this fact occurs in

Problem 2-20.

(a) Prove that if x® = y" and #n is odd, then x = y. Hint: First explain
why it suffices to consider only the case x, y > 0; then show that
x < yand y > x are both impossible.

(b) Prove that if x* = y™ and » is even, then x = y or x = —y.

Although the basic properties of inequalities were stated in terms of the

collection P of all positive numbers, and < was defined in terms of £,

this procedure can be reversed. Suppose that P10-P12 are replaced by

(P'10) For any numbers ¢ and 4 one, and only one, of the follow-
ing holds:

(i) a=¢,
Gi) a < b,
(i) & < a.
(P’11) For any numbers a, b, and ¢, if a < & and b < ¢, then
a < ¢
(P'12) For any numbers a, b, and ¢, if a < b, thena +¢ < b + ¢.
(P’13) For any numbers a, b, and ¢, if @ < b and 0 <¢, then
ac < be.

Show that P10-P12 can then be deduced as theorems.
Express each of the following with at least one less pair of absolute value
signs.

@ [V2+4+V3-+V5+VT

(i) (ja + b = |a| — [&D].

(iii) |(la 4 6] + le] = [a + & + <.
(iv) |%* — 2x + 2. B B
v (V2 + V3 - [V5 - V7).
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10.

11.

12.

13.

Express each of the following without absolute value signs, treating
various cases separately when necessary.

@) la+ & — |5l
@) [(]x] = DI.
(iii) |x| — |x?.

(iv) a = |(a — la])].

Find all numbers x for which

@ |x—3 =8
Qi) |x— 3| <8.
Gi) |x + 4] < 2.
Giv) |x—1]+x—=2>1.
V) =1+ x+1] <2
(vi) |x—14+x+1<1.
(vii) |« — 1] }x+ 1] =0.
(viii) |x — 1] - |x + 2| = 3.

Prove the following:

@ ol = lx -yl

I 1
(ii) ! | = l—l; if x # 0. (The best way to do this is to remember what
X X
Jx]71is.)
(iii) Il Thify = 0.
bl

(iv) |x —y| < |x] + |y|. (Give a very short proof.)

(v) |¥] = |yl < |x — y|. (A very short proof is possible, if you write
things in the right way.)

(vi) |(Jx] = |¥D| < |x — y|. (Why does this follow immediately from
(v)?)

(vii) |x +y + 2| < |x| 4 |y] + |2|. Indicate when equality holds, and
prove your statement.

The maximum of two numbers x and y is denoted by max(x, y). Thus
max(—1,3) = max(3,3) =3 and max(—1, —4) = max(—4, —1)
= —1. The minimum of x and y is denoted by min(x, y). Prove that

max(x, y) = x+y-i;[y —
mins,) = 252 1 =,

Derive a formula for max(x, y, z) and min(x, y, 2), using, for example,

max(x, y, z) = max(x, max(y, z)).
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14. (a) Prove that |a| = |—a|. (The trick is not to become confused by too
many cases. First prove the statement for « > 0. Why is it then
obvious for a < 0?)
(b) Prove that —b < a < b if and only if |¢| < 4. In particular, it
follows that —|a| < a < |al.
(c) Use this fact to give a new proof that |a + b] < |a] + |8].
*15. (a) Use Problem 1 and Problem 7 to prove that if x and y are not both
0, then
x4 xy 4+ 92 # 0,
x4 x%y 4 a0,
For every number x > 0, each of these expressions is positive for some
positive number y and also for some negative y (namely, y = +x); it
therefore seems reasonable that the » signs can be replaced by >
signs. This maneuver is valid, but we are not yet in a position to prove
this (see Problem 7-9). Parts (b) and (d) of this problem prov1dc a
direct demonstration that the > signs hold.

(b) Using the fact that
X +2m+yt =+ 20,
show that the assumption x* + xy + y* < 0 leads to a contradiction.
(c) Show similarly that if x and y are not both 0, then
4x? 4+ 6xy + 42 > 0,
3x% 4+ 5xy + 32> 0.
**(d) Show that if x and y are not both 0, then
x4+x3y+x2y2+xy3+y4> 0
*16. (a) Show that
(x +y)2 =x*4y* onlywhenx =0ory =0,
(x+y)?°*=x"+y* onlywhenx =0ory=0o0rx = —y.
(b) Use Problem 15 to find out when (x + y)* = x* 4 y*
**(c) Find out when (x + y)® = x®* 4 y°. Hint: From the assumption
(x + y)® = x®* + »® you should be able to derive the equation
x% 4+ 2x% + 2xy? 4 y3 = 0, if xy » 0. This implies that (x + y)® =
#y +x° = x»yx + ).
You should now be able to make a good guess as to when (x + y)" =

x™ + y™; the proof is contained in Problem 11-41.
17. (a) Suppose that 62 — 4¢ > 0. Show that the numbers

b+ Ve —4 - -V 4
2 ’ 2

both satisfy the equation x* + bx + ¢ = 0.
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(b) Suppose that #? — 4c < 0. Show that there are no numbers x
satisfying x* + bx + ¢ = 0; in fact, x> 4+ bx + ¢ > 0 for all x. Hint:
“Complete the square,” i.e., write x* + bx + ¢ = (x + 6/2)2 +?

(c) Use this fact to give another proof that if x and y are not both 0,
then x% + xy + % > 0.

(d) For which numbers « is it true that x* + axy + y? > 0 whenever
x and y are not both 0?

(e) Find the smallest possible value of x* 4 bx 4 ¢ and of ax® + bx + ¢,
for @ # 0. (Use the trick in part (b).)

18. The fact that ¢* > 0 for all numbers 4, elementary as it may seem, is
nevertheless the fundamental idea upon which most important in-
equalities are ultimately based. The great-granddaddy of all inequalities
is the Schwartz inequality:

x1y1 + x2ys < Vx? 4 xp2 \/y12 + yat

The three proofs of the Schwartz inequality outlined below have only
one thing in common-—their reliance on the fact that 2? > 0 for all a.

{(a) Prove the Schwartz inequality by first proving that
(X12 + x22)<})1? +y22) = (X1y1 + x2}'2)2 + (lez - JL‘2}11)2-

(b) Prove that if x;1 = Ay; and x; = Ay, for some number A, then
equality holds in the Schwartz inequality. Prove the same thing if
y1 = y2 = 0. Now suppose that y; and y, are not both 0, and that
there is no number A such that x; = Ay, and x; = Ay.. Then

O < (M — )2+ Ays — x)?
= N)'()’lz +)’22) - 2}\(?51)/'1 -+ x2)’2) -+ (Xlﬁ + 1'22)-

Using Problem 17, complete the proof of the Schwartz inequality.

(c) Prove the Schwartz inequality by using 2xy < x? 4 y? (how is this
derived?) with
x Xi Ji
= ————— ]
Viad + x? Vit 4y

first for ; = 1 and then for / = 2.

(d) Deduce, from each of these three proofs, that equality hoids only
when y; = y; = 0 or when there is a number X such that x; = Ay;
and Xy = )\)/2

In our later work, three facts about inequalities will be crucial. Although
proofs will be supplied at the appropriate point in the text, a personal assault
on these problems is infinitely more enlightening than a perusal of a com-
pletely worked-out proof. The statements of these propositions involve some
weird numbers, but their basic message is very simple: if x is close enough to x,
and y is close enough to y,, then x 4 y will be close to xy + yo, and xy will be
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close to xoo, and 1/y will be close to 1/y,. The symbol “¢” which appears in
these propositions is the fifth letter of the Greek alphabet (“epsilon’), and
could just as well be replaced by a less intimidating Roman letter; however,
tradition has made the use of ¢ almost sacrosanct in the contexts to which
these theorems apply.

19. Prove that if
3 3
EX _ Xu! < 5 and b) __yol < 5’
then
(x4) = (ot 20| <
(v — ) = (xo — 3| <&
*20. Prove that if

3 N\
— = 1) and ly —y <
TR, y =l

then |xy — xgyo| < €.

(The notation “min” was defined in Problem 13, but the formula pro-
vided by that problem is irrelevant at the moment; the first inequality
in the hypothesis just means that

3
— xol i _—
lx — xo} < mm( ST 1)

< ———"—— and |x — x| < 1;
2([30l + 1) '

\x - XOI
at one point in the argument you will need the first inequality, and at
another point you will need the second. One more word of advice: since
the hypotheses only provide information about x — x; and y — o, it is
almost a foregone conclusion that the proof will depend upon writing
xy — xpyo in a way that involves x — xp and y — Yo.)

#21.  Prove that if yo # 0 and
\ { (1ol elyol®
y y0|<m1n(2,- > );
then y # 0 and
I 1 1|
-—— | <&
y Yol

%99, Replace the question marks in the following statement by expressions
involving €, xo. and y, so that the conclusion will be true:

If yo # 0 and
[y —yo] <? and |x —xl <?

then y = 0 and
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*23.

24.

This problem is trivial in the sense that its solution follows from Problems
20 and 21 with almost no work at all (notice that x/y = x - 1/y). The
crucial point is not to become confused; decide which of the two
problems should be used first, and don’t panic if your answer looks
unlikely.

This problem shows that the actual placement of parentheses in a sum

b

not familiar with such proofs, but still want to tackle this problem, it can
be saved until after Chapter 2, where proofs by induction are explained.
Let us agree, for definiteness, that a; + * * - 4+ g, will denote

av+ (a2 + (a5 + - - + (@2 + (any +an)) + ¢ ).

Thus a1 + as + a; denotes a1 + (a2 + a3), and a; + a2 + a5 + a4
denotes a; + (a2 + (a3 + a4)), etc.

(a) Prove that
(al+ v +ak)+ak+l =a + ‘- +Clk+1-

Hint: Use induction on #.
(b) Prove that if n > £, then

(@a+ - ta)t@apnt - +a)=a+ - +a.

Hint: Use part (a) to give a proof by induction on %.

is irrelevant. The proofs involve “mathematical induction”; if you are

(c) Let s(ay, . . . , a;) be some sum formed from ai, . . . , az Show
that
S(dl, .. ,ak) =(11+ IR + ag.
Hint: There mustbe twosums s’(a1, . . . , @) and s (aq1, . . . , ax)
such that
say - . s a@) =5ay . @) + 5 (g - .. ag).

Suppose that we interpret “number” to mean either 0 or 1, and +
and - to be the operations defined by the following two tables.

+ 0 1 : 0 1
0 0 | 1 0 0 0
1 1 0 1 0 1

Check that properties P1-P9 all hold, even though 1 + 1 = 0.



CHAPTER

NUMBERS OF VARIOUS SORTS

In Chapter 1 we used the word “number” very loosely, despite our concern
with the basic properties of numbers. It will now be necessary to distinguish
carefully various kinds of numbers.

The simplest numbers are the ‘“‘counting numbers”

1,2,3 ....

The fundamental significance of this collection of numbers is emphasized by
its symbol N (for natural numbers). A brief glance at P1-P12 will show that
our basic properties of “numbers’” do not apply to N—for example, P2 and
P3 do not make sense for N. From this point of view the system N has many
deficiencies. Nevertheless, N is sufficiently important to deserve several com-
ments before we consider larger collections of numbers.

The most basic property of N is the principle of ““mathematical induction.”
Suppose P(x) means that the property P holds for the number x. Then the
principle of mathematical induction states that P(x) is true for all natural
numbers x provided that

(1) P(1) is true.
(2) Whenever P(k) is true, P(k + 1) is true.

Note that condition (2) merely asserts the truth of P(k 4 1) under the
assumption that P(k) is true; this suffices to ensure the truth of P(x) for all ,
if condition (1) also holds. In fact, if (1) is true, then it follows that P(2) is
true (by using (2) in the special case £ = 1). Now, since P(2) is true it follows
that P(3) is true (using (2) in the special case £ = 2). It is clear that each
number will eventually be reached by a series of steps of this sort, so that
P(k) is true for all numbers £.

A favorite illustration of the reasoning behind mathematical induction
envisions an infinite line of people, '

person number 1, person number 2, person number 3, . . . .

If each person has been instructed to tell any secret he hears to the person

behind him (the one with the next largest number) and a secret is told to-

person number 1, then clearly every person will eventually learn the secret.
If P(x) is the assertion that person number x will learn the secret, then the
instructions given (to tell all secrets learned to the next person) assures that
condition (2) is true, and telling the secret to person number 1 makes (1) true.
The following example is a less facetious use of mathematical induction.
There is a useful and striking formula which expresses the sum of the first z
numbers in a simpletway:

21
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n(n +1)

14+ +n=
2

To prove this formula, note first that it is clearly true for » = 1. Now assume
that for some integer £ we have
{4 - “+k=k(/r+1)‘
2
Then
P b 4D =’“———(’“:1)+k+1
_kE+1D) +2k+2
2
_kF+3k+2
2
_ G+ DE+2)
2

so the formula is also true for £ + 1. By the principle of induction this proves
the formula for all natural numbers n. This particular example illustrates a
phenomenon that frequently occurs, especially in connection with formulas
like the one just proved. Although the proof by induction is often quite
straightforward, the method by which the formula was discovered remains a
mystery. Problems 4 and 5 indicate how some formulas of this type may be
derived.

The principle of mathematical induction may be formulated in an equiv-
alent way without speaking of “properties” of a number, a term which is
sufficiently vague to be eschewed in a mathematical discussion. A more precise
formulation states that if 4 is any collection (or “set”’—a synonymous mathe-
matical term) of natural numbers and

(1) 1isin 4,
(2) k4 1isin 4 whenever £ is in 4,

then A is the set of all natural numbers. It should be clear that this formulation
adequately replaces the less formal one given previously—we just consider the
set A of natural numbers x which satisfy P(x). For example, suppose 4 is the
set of natural numbers 2 for which it is true that

n(n + 1)

1 —
+ +n >

Our previous proof of this formula showed that 4 contains 1, and that £ + 1
isin 4, if £ is. It follows that A4 is the set of all natural numbers, i.e., that the
formula holds for all natural numbers n.

There is yet another rigorous formulation of the principle of mathematical
induction, which looks quite different. If 4 is any collection of natural num-
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bers, it is tempting to say that 4 must have a smallest member. Actually, this
statement can fail to be true in a rather subtle way. A particularly important
set of natural numbers is the collection A4 that contains no natural numbers at
all, the “empty collection” or “null set,”* denoted by @. The null set # is a
collection of natural numbers that has no smallest member—in fact, it has no
members at all. This is the only possible exception, however; if 4 is a nonnull
set of natural numbers, then A4 has a least member. This “intuitively obvious”
statement, known as the “well-ordering principle,” can be proved from the
principle of induction as follows. Suppose that the set 4 has no least member.
Let B be the set of natural numbers » such that 1, . . . , n are all not in A.
Clearly 1 is in B (because if 1 were in A4, then 4 would have 1 as smallest
member). Moreover, if 1, . . . , £ are not in 4, surely £ + 1 is not in 4
(otherwise £ 4+ 1 would be the smallest member of 4),s01, . . . , £ + 1 are
all not in A. This shows that if £ is in B, then £ 4+ 1 is in B. It follows that
every number 7 is in B, i.e., the numbers 1, . . . , n are nof in 4 for any
natural number n. Thus 4 = 9, which completes the proof.

It is also possible to prove the principle of induction from the well-ordering
principle (Problem 9). Either principle may be considered as a basic assump-
tion about the natural numbers.

There is still another form of induction which should be mentioned. It
sometimes happens that in order to prove P(k + 1) we must assume not only
P(k), but also P(/) for all natural numbers / < £. In this case we rely on the
‘“principle of complete induction’: If 4 is a set of natural numbers and

(1) 1isin A4,
(2) k+1isinAdifl, ..., karein 4,

then 4 is the set of all natural numbers.

Although the principle of complete induction may appear much stronger
than the ordinary principle of induction, it is actually a consequence of that
principle. The proof of this fact is left to the reader, with a hint (Problem 10).
Applications will be found in Problems 6, 16, 19, and 20.

Closely related to proofs by induction are ‘“recursive definitions.” For
example, the number n! (read “‘n factorial®) is defined as the product of all the
natural numbers less than or equal to n:

al=1-2-...(n—-1)n
This can be expressed more precisely as follows:
1) tr=1,
2) nl=n-@m-—1)0L

This form of the definition exhibits the relationship between n! and (n — 1)!

* Although it may not strike you as a collection, in the ordinary sense of the word, the null set
arises quite naturally in many contexts. We frequently consider the set 4, consisting of all x
satisfying Some property P; often we have no guarantee that P is satisfied by any number, so
that 4 might be f—in fact often one proves that P is always false by showing that 4 = .
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in an explicit way that is ideally suited for proofs by induction. Problem 21
reviews a definition already familiar to you, which may be expressed more
succinctly as a recursive definition; as this problem shows, the recursive
definition is really necessary for a rigorous proof of some of the basic properties
of the definition.

One definition which may not be familiar involves some convenient nota-
tion which we will constantly be using. Instead of writing

al+"'+an;

<

we will usually employ the Greek letter 2 (capital sigma, for “sum”) and

write
n

i=1
n

In other words, 2 a; denotes the sum of the numbers obtained by letting
i=1

i=1,2,...,n Thus
n

2i=1+2+-"+n=

t=1

n(n + 1)
2

Notice that the letter 7 really has nothing to do with the number denoted by

n

E i, and can be replaced by any convenient symbol (except n, of course!):

i=1

=n(n+1)
2 pl
i=1
NP R )
z]— 2
=1
J LR
En:J(]-l-l).
2

n=1
n
To define z a; precisely really requires a recursive definition:

i=1

= ai,

1
W Y a

=1

n n—1
(2) 2 a; Z a; + aq.

i=1 1=1

But only purveyors of mathematical austerity would insist too strongly on
such precision. In practice, all sorts of modifications of this symbolism are
used, and no one ever considers it necessary to add any words of explanation.
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The symbol

2

ai,

i
i

wi
ren

for example, is an obvious way of writing

a1+ a+az+as+tas+ 0+ an,

or more precisely,

The deficiencies of the natural numbers which we discovered at the begin-
ning of this chapter may be partially remedied by extending this system to the
set of integers

., =2,—-1,0,1,2,....

This set is denoted by Z (from German ‘“Zahl,” number). Of properties
P1-P12, only P7 fails for Z.

A still larger system of numbers is obtained by taking quotients m/n of
integers (with n = 0). These numbers are called rational numbers, and the
set of all rational numbers is denoted by Q (for ‘“quotients”). In this system of
numbers all of P1-P12 are true. It is tempting to conclude that the “properties
of numbers,” which we studied in some detail in Chapter 1, refer to just one
set of numbers, namely, Q. There is, however, a still larger collection of
numbers to which properties P1-P12 apply—the set of all real numbers,
denoted by R. The real numbers include not only the rational numbers, but
other numbers as well (the irrational numbers) which can be represented
by infinite decimals; 7 and V/2 are both examples of irrational numbers. The
proof that 7 is irrational is not easy—we shall devote all of Chapter 16 of

_Part III to a proof of this fact. The irrationality of \/2, on the other hand, is
quite simple, and was known to the Greeks. (Since the Pythagorean theorem
shows that an isosceles right triangle, with sides of length 1, has a hypotenuse
of length \/2, it is not surprising that the Greeks should have investigated this
question.) The proof depends on a few observations about the natural num-
bers. Every natural number n can be written either in the form 2k for some
integer £, or else in the form 2 + 1 for some integer £ (this “obvious” fact has
a simple proof by induction (Problem 7)). Those natural numbers of the form
2k are called even; those of the form 24 + 1 are called odd. Note that even
numbers have even squares, and odd numbers have odd squares:

(26)2 = 4k2 = 2+ (2k?),
k4 1) =4k + 4k +1 =2 (2k*+ 2k) + 1.

In particular it follows that the converse must also hold: if #? is even, then n is
even; if n? is odd, then n is odd. The proof that V2 is irrational is now quite
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simple. Suppose that V2 were rational; that is, suppose there were natural

numbers p and ¢ such that
(-
q

We can assume that p and ¢ have no common divisor (since all common
divisors could be divided out to begin with). Now we have

ﬁ2 — 2(]2_

This shows that p® is even, and consequently p must be even; that is, p = 2k
for some natural number 4. Then

P = 452 = 2q2,

)
2k? = g%

This shows that ¢? is even, and consequently that ¢ is even. Thus both p and ¢
are even, contradicting the fact that p and ¢ have no common divisor. This
contradiction completes the proof.

It is important to understand precisely what this proof shows. We have
demonstrated that there is no rational number x such that x* = 2. This asser-
tion is often expressed more briefly by saying that V/2 is irrational. Note,
however, that the use of the symbol V2 implies the existence of some number
(necessarily irrational) whose square is 2. We have not proved that such a
number exists and we can assert confidently that, at present, a proof is
impossible for us. Any proof at this stage would have to be based on P1-P12
(the only properties of R we have mentioned); since P1-P12 are also true for
Q the exact same argument would show that there is a rational number whose
square is 2, and this we know is false. (Note that the reverse argument will
not work—our proof that there is no rational number whose square is 2 cannot
be used to show that there is no real number whose square is 2, because our
proof used not only P1-P12 but also a special property of Q, the fact that every
number in Q can be written p/q for integers p and q.)

This particular deficiency in our list of properties of the real numbers could,
of course, be corrected by adding a new property which asserts the existence
of square roots of positive numbers. Resorting to such a measure is, however,
neither aesthetically pleasing nor mathematically satisfactory; we would still
not know that every number has an nth root if  is odd, and that every positive
number has an nth root if n is even. Even if we assumed this, we could not
prove the existence of a number x satisfying ¥+ x4+ 1=0 (even though
there does happen to be one), since we do not know how to write the solution
of the equation in terms of nth roots (in fact, it is known that the solution
cannot be written in this form). And, of course, we certainly do not wish to
assume that all equations have solutions, since this is false (no real number x
satisfies x? + 1 = 0, for example). In fact, this direction of investigation is
not a fruitful one. The most useful hints about the property distinguishing R
from Q, the most compelling evidence for the necessity of elucidating this
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property, do not come from the study of numbers alone. In order to study the
properties of the real numbers in a more profound way, we must study more
than the real numbers. At this point we must begin with the foundations of
calculus, in particular the fundamental concept on which calculus is based—

functions.

PROBLEMS

1.

2.

Prove the following formulas by induction.

@ 14 2 DBED

i 1°4 - +nd=(0+ -+
Find a formula for

@ S@-1)=1434+54+" "4+ @2n—1).

1

IR

T

I

() Y 2 —1)=12432 45+ - + 21— 1)

1

It

1

Hint: What do these expressions have todowith 1 +2 +3 4+ - - - +
2nand 1% + 22 4 324 -+ -+ + (2n)%?

If 0 £ % < n, the “binomial coefficient” (Z) is defined by

n n! aln—1) -+ (n—k+1) .
= = , if k£ #0,
(/f) Klin — k)! k! ! n
(”) = (n) = 1. (This becomes a special case of the first formula if we
0 n
define 0! = 1.)

(a) Prove that
n+ 1\ _ n n\,
() -G2)+6)
(The proof does not require an induction argument.)

This relation gives rise to the following configuration, known as
“Pascal’s triangle’’—a number not on one of the sides is the sum of

the two numbers above it; the binomial coefficient (Z) is the kth

number in the nth row.
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(b) Notice that all the numbers in Pascal’s triangle are natural num-
bers. Use part (a) to prove by induction that (Z) is always a natural

number. (Your entire proof by induction will, in a sense, be summed
up in a glance by Pascal’s triangle.)
n

(c) Give another proof that ( i

) is a natural number by showing that

(Z) is the number of sets of exactly & integers each chosen from

1, ... ,n
(d) Prove the “binomial theorem”: If 2 and b are any numbers and z is
a natural number, then

(@+6)" =a" + (”) a1 +(”> Pl R +( § )ab"_l + o
1 2 n—1

IR

i=0

(e) Prove that

® 20(;)=(g)+--.+(;)=2n.
0 () =00+ =0

4. (a) Prove by induction on n that

1 —
Lfrdrd s =
1 —r
ifr 1 (ifr = 1, evaluating the sum certainly presents no problem).
(b) Derive this result by setting § = 1 +7r 4 - - *+ + r*, multiplying
this equation by 7, and solving the two equations for S.

5. The formula for 12 + - - - + n? may be derived as follows. We begin

with the formula
(k+ 1) — & =382+ 3%k + 1.
Writing this formula for £ = 1, . . . , n and adding, we obtain

22 —18=3-1243-1+1
38 —28=3-2243-2+41

(n+1)2—-n*=3-n24+3-n+4+1
(n+1)—1 =3[124+ - +n]+3[1+ - +n]+n
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Thus we can find 2 k2 if we already know z k (which could have been
k=1 k=1

found in a similar way). Use this method to find

(l) 13+"'+7Z3.
() 144 - -+t

1 1
S R T R
. 3 5 2n + 1
1 e e .
(iv) 12.22 ' p2.32 + + ni(n + 1)2

n

Use the method of Problem 5 to show that Z k? can always be written
k=1
in the form

np+1
pt1

(The first 10 such expressions are

+AnP+BﬂP—1+Cnp—2+ e e

n

Z k=3n2 +in

k=1

n

YR =gt i+
£

z k= dnt 4 3nf + Ln?
£

Yok =dnt et At = gon

i

Yok =gt 4+t = Pt
£=1

Y= gt =+ T
£

Z Fo=24n 4+ + iane — Shent 4 ign?
E=1

z k=30 + 0% 4+ &7 — et 2n®  — ggn
Ic:l

2 B o= gn® 4 200 4+ 3t — Ten® + fnt — Ten
=
2 F1O = ghontt 4 110 4 88 — 1nf 416 — §n® e

*
U
—

Notice that the coefficients in the second column are always 1, and that
after the third column the powers of n with nonzero coefficients decrease
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by 2 until #2 or n is reached. The coefficients in all but the first two

columns seem to be rather haphazard, but there actually is some sort of

pattern; finding it may be regarded as a super-perspicacity test. See

Problem 26-16 for the complete story.)

Prove that every natural number is either even or odd.

Prove that if a set 4 of natural numbers contains n, and contains £ + 1

whenever it contains £, then A contains all natural numbers > no.

Prove the principle of mathematical induction from the well-ordering

principle.

Prove the principle of complete induction from the ordinary principle of

induction. Hint: If 4 contains 1 and 4 contains n + 1 whenever it con-

tains 1, . . . , n, consider the set B of all k£ such that 1, . . . , fare all

in A4.

(a) If ais rational and 4 is irrational, is « + b necessarily irrational?
What if ¢ and b are both irrational?

(b) If a is rational and 4 is irrational, is ab necessarily irrational?
(Careful!)

(¢) Is there a number a such that 42 is irrational, but a* is rational?
(d) Are there two irrational numbers whose sum and product are both
rational? B
(a) Prove that \/%, \/g, and V6 are irrational. Hint: To treat \/3, for

example, use the fact that every integer is of the form 37 or 3n + 1
or 3n + 2. Why doesn’t this proof work for V4?
(b) Prove that V/2 and V'3 are irrational.

Prove that

(a) V2 4+ \/_5 is irrational.
(b) V6 — V2 — V'3 is irrational.

(a) Prove that if x = p + \/; where p and ¢ are rational, and m is a
natural number, then x™ = a + & \/z—] for some rational « and b.
(b) Prove also that (p — \/;)"‘ =a—1b \/;
(a) Prove that if m and n are natural numbers and m?/n* < 2, then
(m 4+ 2n)%/ (m + n)? > 2; show, moreover, that
M -2 2 - T_z
(m + n)? n’
(b) Prove the same results with all inequality signs reversed.
(c) Prove that if m/n < \/5, then there is another rational number
m'/n’ with m/n < m'/n’ < V2.
It seems likely that V7 is irrational whenever the natural number 7 is
not the square of another natural number. Although the method of
Problem 12 may actually be used to treat any particular case, it is not
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clear in advance that it will always work, and a proof for the general
case requires .ome extra information. A natural number p is called a
prime number if it is impossible to write p = ab for natural numbers
a and 4 unless one of these is p, and the other 1; for convenience we also
agree that 1 is not a prime number. The first few prime numbers are 2,
3,5,7,11,13,17,19. If » > 1 is not a prime, then n = ab, with e and &
both < n; if either @ or & is not a prime it can be factored similarl-y; con-
tinuing in this way proves that we can write n as a product of primes.
For example, 28 = 4-7 = 2-2"7.

(a) Turn this argument into a rigorous proof by complete induction.
(To be sure, any reasonable mathematician would accept the
informal argument, but this is partly because it would be obvious
to him how to state it rigorously.)

A fundamental theorem about integers, which we will not prove here,
states that this factorization is unique, except for the order of the factors.
Thus, for example, 28 can never be written as a product of primes one
of which is 3, nor can it be written in a way that involves 2 only once
(now you should appreciate why 1 is not allowed as a prime).

(b) Using this fact, prove that V1 is irrational unless n = m? for some
natural number m.

(c) Prove more generally that V/n is irrational unless n = m*.

(d) No discussion of prime numbers should fail to allude to Euclid’s
beautiful proof that there are infinitely many of them. Prove that

there cannot be only finitely many prime numbers py, p2, p3, . . .
pn by considering p1 - p2- . . . “p.+ 1.
(a) Prove that if x satisfies
" gk Vo s gy =0,
for some integers a,_1, . . . , ao, then x is irrational unless x is an

integer. (Why is this a generalization of Problem 16?)

(b) Prove that V2 + V/2 is irrational. Hint: Start by working out the
first 6 powers of this number.
Prove Bernoulli’s inequality: If # > —1, then

A+ A" > 1+ nk
Why is this trivial if 4 > 0°?

The Fibonacci sequence a, a, a3, . . . is defined as follows:
ay = 1,
as = 1,
n = Gn_1 + an_2 forn > 3.
This sequence, which begins 1, 1. 2, 3, 5,8, . . . , was discovered by

Fibonacci (circa 1175-1250), in connection with a problem about
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rabbits. Fibonacci assumed that an initial pair of rabbits gave birth to
one new pair of rabbits per month, and that after two months each new
pair behaved similarly. The number a, of pairs born in the »th month is
@n_1 + an_», because a pair of rabbits is born for each pair born the
previous month, and moreover each pair born two months ago now
gives birth to another pair. The number of interesting results about this
sequence is truly amazing—there is even a Fibonacci Association which
publishes a journal, The Fibonacci Quarterly. Prove that

1+ V5" (1:_\/5 "
2 2
an = — .
Vs
One way of deriving this astonishing formula is presented in Problem
23-8.

The result in Problem 1-6 has an important generalization: Ifai, . . . ,
a, > 0, then

\"/ﬁ<al+ C ot oan
1. . n S ————"——‘n
(a) Why is this true if a; = - * -+ = a,? Suppose not all 4; are equal,

say a; # a;. If a; and q; are both replaced by (a; + a;)/2 what
happens to the “arithmetic mean” A4, = (a1 + * * * + a,)/n?
What happens to the ‘“geometric mean” G, = \n/al' L. tan?
Why does repeating this process enough times eventually prove
that G, < A4,? (This is another place where it is a good exercise to
provide a formal proof by induction, as well as informal reason.)

The reasoning in the previous proof is closely related to another interest-

ing proof.

(b) Using the fact that G, < A, when n = 2, prove, by induction on
k, that G, < A, for n = 2k,

(c) For a general n, let 2™ > n. Apply part (b) to the 2™ numbers

iy, « o o 5 Qny Ay o o . 5 An

2m —n times

to prove that G, < 4,.

The following is a recursive definition of a™:

al = a,

an+1 = g" -+ q.

Prove, by induction, that

ntm _ am,

a a®:
(an)m — anm.
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(Don’t try to be fancy: use either induction on # or induction on m, not
both at once.)

Suppose we know properties P1 and P4 for the natural numbers, but
that multiplication has never been mentioned. Then the following can
be used as a recursive definition of multiplication:

15 =b,
(a+ 1) b=a"b+ b

Prove the following (in the order suggested!):

a-(b+¢)=a b+ a-c (use induction on a),

a1 =a,

a+b = b+ a (you just finished proving the case b = 1).
In this chapter we began with the natural numbers and gradually built
up to the real numbers. A completely rigorous discussion of this process
requires a little book in itself (see Part V). No one has ever figured out
how to get to the real numbers without going through this process, but
if we do accept the real numbers as given, then the natural numbers can
be defined as the real numbers of the form 1,1 + 1,1 + 1 4 1, etc. The
whole point of this problem is to show that there is a rigorous mathe-
matical way of saying “etc.”

(a) A set 4 of real numbers is called inductive if

(1) lisin A4,
(2) k 4+ 1isin A whenever £ is in 4.
Prove that
(i) R is inductive.
(ii) The set of positive real numbers is inductive.
(iii) The set of positive real numbers unequal to ¥ is inductive.
(iv) The set of positive real numbers unequal to 5 is not inductive.

(v) If A and B are inductive, then the set C of real numbers which
are in both 4 and B is also inductive.

(b) A real number » will be called a natural number if n is In every
inductive set.

(i) Prove that 1 is a natural number.
(ii) Prove that & + 1 is a natural number if £ is a natural number.



